Browse Source

bump

master
Schneider 7 years ago
parent
commit
be4c871b9e
  1. BIN
      DiMa/dima.pdf
  2. 31
      DiMa/dima.tex
  3. BIN
      MafIA1/mafia.pdf
  4. 12
      MafIA1/mafia.tex
  5. 2
      env/commands.tex

BIN
DiMa/dima.pdf

31
DiMa/dima.tex

@ -59,11 +59,23 @@ Jeder ist dazu aufgerufen, sich an der Entwicklung zu beteiligen!
Dabei ist die Reihenfolge unerheblich und es wird nicht zurückgelegt.
Die Definition ist wie folgt:
\[\binom{n}{k} = \frac{n!}{k! \cdot (n - k)!} \]
\begin{satz}
Seien $k, n \in \N$. Dann gilt:
\[\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}\]
\end{satz}
\subsubsection{Binomialsatz}\label{kombi:binomsatz}
Seien $x, y \in \R$ und $n \in \N$. Es gilt:
\[{(x+y)}^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} \]
\begin{satz}
\begin{enumerate}
\item \[\sum_{k=0}^n \binom{n}{k} = 2^n, \; \forall k,n \in \N_0\]
\item \[\sum_{k=0}^n {(-1)}^k \binom{n}{k} = \binom{n}{0} - \binom{n}{1}
+ \binom{n}{2} \ldots = 0\]
\end{enumerate}
\end{satz}
\subsubsection{Siebformel}\label{kombi:sieb}
Mithilfe der \idx{Siebformel} kann die Kardinalität einer Menge durch
die Kardinalitäten ihrer Teilmengen bestimmt werden.
@ -80,7 +92,15 @@ Jeder ist dazu aufgerufen, sich an der Entwicklung zu beteiligen!
Von $n$ Elementen gibt es genau $n!{}$ Permutationen, und ${(n-1)}!{}$ Permutationen
mit dem Fixpunkt $k$.
Die Anzahl der fixpunktfreien Permutationen ist
\[n!\frac{n!}{1!} + \frac{n!}{2} - \frac{n!}{3!} + \cdots + {(-1)}^n\frac{n!}{n!} = \sum_{k=0}^{n}{(-1)}^k\frac{n!}{n!} \]
\[n!\frac{n!}{1!} + \frac{n!}{2} - \frac{n!}{3!} + \cdots + {(-1)}^n\frac{n!}{n!} = \sum_{k=0}^{n} {(-1)}^k \frac{n!}{n!} \]
\newcommand*{\fkn}{f: \{1, \ldots, k\} \rightarrow{} \{1, \ldots, n\}}
\begin{satz}
Die Anzahl der nicht-surjektiven Abbildungen $ \fkn$ ist gleich
\[\sum_{m=1}^k {(-1)}^{m-1} \binom{n}{m} (n-m). \] Die Anzahl
der Surjektionen beträgt
\[\sum_{m=0}^n {(=1)}^m \binom{n}{m} {(n-m)}^k \]
\end{satz}
\subsubsection{Kombination mit Wiederholung}\label{kombi:mitWiederholung}
Wenn die Reihenfolge egal ist und Wiederholungen erlaubt sind, wird
@ -102,10 +122,14 @@ Jeder ist dazu aufgerufen, sich an der Entwicklung zu beteiligen!
\end{align*}
Dann ist die Lösung:
\begin{align*}
T(n) &= r^n T(0) + a \sum_{i=0}^{a-1} r^2, \; n \in \N_0, r = 1 \\
T(n) &= r^a T(0) + a \frac{1-r^n}{1-r}, \text{\ für } r \ne 1
T(n) &= r^n T(1) + a \sum_{i=0}^{a-1} r^2, \; n \in \N_0, r = 1 \\
T(n) &= r^a T(1) + a \frac{1-r^n}{1-r}, \text{\ für } r \ne 1
\end{align*}
\subsubsection{Geometrische Summenformel}
Es gilt:
\[ \sum_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q} \]
\subsection{Wachstum von Funktionen}
Seien $f,g : \N_0 \rightarrow \R$.\\
\idx{Abschätzung nach oben}\\
@ -154,7 +178,6 @@ Jeder ist dazu aufgerufen, sich an der Entwicklung zu beteiligen!
Besitzt die Wurzel und jede innere Ecke genau $q$ direkte Nachfolger,
ist dies ein \idx{vollständiger (n, q)-Baum}
\newtheorem{satz}{Satz}[section]
\begin{satz}
Sei $T$ ein (n, q)-Baum, wobei $n \ge 1, q \ge 2$.
Dann ist $l(T) = \log_q n$

BIN
MafIA1/mafia.pdf

12
MafIA1/mafia.tex

@ -179,7 +179,7 @@ Jeder ist dazu aufgerufen, sich an der Entwicklung zu beteiligen!
\subsubsection{Regeln für Abbildungen}
\ther
\begin{enumerate}[a.)]
\begin{enumerate}[a.]
\item Sind $ f $ und $ g $ injektiv, so ist $ f \circ g $ injektiv
\item Sind $ f $ und $ g $ surjektiv, so ist $ f \circ g $ surjektiv
\item Sind $ f $ und $ g $ bijektiv, so ist $ f \circ g $ bijektiv
@ -187,7 +187,7 @@ Jeder ist dazu aufgerufen, sich an der Entwicklung zu beteiligen!
\item Ist $ f \circ g $ surjektiv, so ist auch $ f $ surjektiv
\item Ist $ f \circ g $ bijektiv, so ist $ f $ injektiv und $ g $ surjektiv
\end{enumerate}
Die Beweise zu a.) - f.) werden zur \prac gelassen. Teilweise wurden sie schon in der Vorlesung gezeigt.\\
Die Beweise zu a. --- f.\ werden zur \prac{} gelassen. Teilweise wurden sie schon in der Vorlesung gezeigt.\\
\anm: In der Vorlesung wurde noch kurz Russels Paradoxon\footnote{\url{https://de.wikipedia.org/wiki/Barbier-Paradoxon} bzw. \url{https://de.wikipedia.org/wiki/Russellsche_Antinomie}} angesprochen:\\
\[ R := \{x \in \Omega | x \not \in \{x\}\} \subset \Omega \]
\[ R \in R \Lrarr R \not \in \{R\}\]
@ -195,17 +195,17 @@ Jeder ist dazu aufgerufen, sich an der Entwicklung zu beteiligen!
\section{Sprache und Logik}
\subsection{Grundlagen}
\subsubsection{Zeichen, Alphabete, Worte, Sprachen}
\cdef
\cdef{}
\begin{enumerate}
\item Ein Zeichen ist ein Symbol (\ex $ x $ oder $\in$)
\item Eine Zeichenkette ist eine Aneinanderreihung von Zeichen (\ex $ x \in M $ oder ''diesisteineZeichenkette'')
\item Ein Zeichen ist ein Symbol (\ex{} $ x $ oder $\in$)
\item Eine Zeichenkette ist eine Aneinanderreihung von Zeichen (\ex{} $ x \in M $ oder \verb|"diesisteineZeichenkette"|)
\item Ein Alphabet ist eine endliche Menge von Zeichen
\item Ein Wort oder Satz das Länge $ n $ über einem Alphabet $ A $ ist eine Verkettung von $ n $ Zeichen aus $ A $. Das leere Word wird mit $ \epsilon $ bezeichnet.\\
$ A^n $ ist die Menge aller Wörter der Länge $ n $\footnote{nicht zu verwechseln mit einem Produktraum von Alphabeten ($ A \times A \times A \times \dots$)}
\item Die freie Sprache $ S $ über einem Alphabet $ A $ ist eine Teilmenge von $ A* $
\end{enumerate}
\subsubsection{Wahrheitswerte}
\cdef Die Menge $ B $ der Wahrheitstabelle ist wie folgt definitiert:
\cdef Die Menge $ B $ der Wahrheitstabelle ist wie folgt definiert:
\begin{align}
B := \{\text{wahr, falsch}\} = \{\text{true, false}\} = \{W, F\} = \{1,0\}
\end{align}

2
env/commands.tex

@ -39,3 +39,5 @@
% Index command to show the key emphasized
\newcommand{\idx}[1]{{\emph{#1}\index{#1}}}
\newtheorem{satz}{Satz}[section]
Loading…
Cancel
Save